276°
Posted 20 hours ago

The Electromagnetic Spectrum Poster - Educational Science Teaching Resource (A1 Size 59.4 x 84.1 cm)

£9.9£99Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

The danger posed by lower energy UV radiation is derived from the ultraviolet photon ‘s power to alter chemical bonds in molecules, even without having enough energy to ionize atoms. Since audible frequencies range up to 20 kHz (or 0.020 MHz) at most, the frequency of the FM radio wave can vary from the carrier by as much as 0.020 MHz. For this reason, the carrier frequencies of two different radio stations cannot be closer than 0.020 MHz. An FM receiver is tuned to resonate at the carrier frequency and has circuitry that responds to variations in frequency, reproducing the audio information.

Visible spectrum. Provided by: Wikipedia. Located at: en.Wikipedia.org/wiki/Visible_spectrum. License: CC BY-SA: Attribution-ShareAlike AM radio waves are used to carry commercial radio signals in the frequency range from 540 to 1600 kHz. The abbreviation AM stands for amplitude modulation—the method for placing information on these waves. AM waves have constant frequency, but a varying amplitude. FM radio waves are also used for commercial radio transmission in the frequency range of 88 to 108 MHz. FM stands for frequency modulation, which produces a wave of constant amplitude but varying frequency. OpenStax College, College Physics. December 17, 2012. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m42444/latest/?collection=col11406/1.7. License: CC BY: Attribution thermography: Any of several techniques for the remote measurement of the temperature variations of a body, especially by creating images produced by infrared radiation.OpenStax College, College Physics. April 28, 2014. Provided by: OpenStax CNX. Located at: http://cnx.org/content/m42444/latest/?collection=col11406/1.7. License: CC BY: Attribution Colors that can be produced by visible light of a narrow band of wavelengths are called pure spectral colors. They can be delineated roughly in wavelength as: violet (380-450 nm), blue (450-495 nm), green (495-570 nm), yellow (570-590 nm), orange (590-620 nm), and red (620 to 750 nm).

Energy is propagated through space in the form of electromagnetic (EM) waves, which are composed of oscillating electric and magnetic fields. EM waves do not require a substance (like air or water) to travel through, meaning that — unlike sound — they can travel through empty space. In a vacuum, all EM waves travel at the same speed: the speed of light (which is itself an EM wave). Like all waves, an EM wave is characterised by its wavelength, and the range of wavelengths we observe, from very long to very short, is what we refer to as the EM spectrum. We divide up the EM spectrum roughly according to how the waves behave when they interact with matter and each division has a name. So we have: radio waves, which have the longest wavelengths; microwaves; infrared; visible light; ultraviolet; x-rays; and finally gamma rays, which have the shortest wavelengths. Celestial objects such as stars, planets and galaxies all emit EM waves at various wavelengths and so different telescopes are designed to be sensitive to different parts of the EM spectrum. EM radiation in and around the visible part of the spectrum is often referred to broadly as ‘light’, with shorter wavelengths referred to as ‘bluer’ and longer wavelengths referred to as ‘redder’. ionizing radiation. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/ionizing_radiation. License: CC BY-SA: Attribution-ShareAlike Gamma rays have characteristics identical to X-rays of the same frequency—they differ only in source. Gamma rays are usually distinguished by their origin: X-rays are emitted by definition by electrons outside the nucleus, while gamma rays are emitted by the nucleus. Ultraviolet (UV) light is electromagnetic radiation with a wavelength shorter than that of visible light, but longer than X-rays, that is, in the range 10 nm to 400 nm, corresponding to photon energies from 3 eV to 124 eV (1 eV = 1.6e -19 J; EM radiation with frequencies higher than those of visible light are often expressed in terms of energy rather than frequency). It is so-named because the spectrum consists of electromagnetic waves with frequencies higher than those that humans identify as the color violet. These frequencies are invisible to humans, but visible to a number of insects and birds. Ultraviolet light gets its name because the spectrum consists of electromagnetic waves with frequencies higher than those that humans identify as the color violet.

Using this poster set to supplement home learning.

Microwaves are used by microwave ovens to heat food. Microwaves at a frequency of 2.45 GHz are produced by accelerating electrons. The microwaves then induce an alternating electric field in the oven. Water and some other constituents of food have a slightly negative charge at one end and a slightly positive charge at one end (called polar molecules). The range of microwave frequencies is specially selected so that the polar molecules, in trying to maintain their orientation with the electric field, absorb these energies and increase their temperatures—a process called dielectric heating. As stated above, while infrared radiation is commonly referred to as heat radiation, only objects emitting with a certain range of temperatures and emissivities will produce most of their electromagnetic emission in the infrared part of the spectrum. However, this is the case for most objects and environments humans encounter in our daily lives. Humans, their surroundings, and the Earth itself emit most of their thermal radiation at wavelengths near 10 microns, the boundary between mid and far infrared according to the delineation above. The range of wavelengths most relevant to thermally emitting objects on earth is often called the thermal infrared. Many astronomical objects emit detectable amounts of IR radiation at non-thermal wavelengths.

High-power microwave sources use specialized vacuum tubes to generate microwaves. These devices operate on different principles from low-frequency vacuum tubes, using the ballistic motion of electrons in a vacuum under the influence of controlling electric or magnetic fields, and include the magnetron (used in microwave ovens), klystron, traveling-wave tube (TWT), and gyrotron. Visible Spectrum: A small part of the electromagnetic spectrum that includes its visible components. The divisions between infrared, visible, and ultraviolet are not perfectly distinct, nor are those between the seven rainbow colors. Radio waves are a type of electromagnetic (EM) radiation with wavelengths in the electromagnetic spectrum longer than infrared light. They have have frequencies from 300 GHz to as low as 3 kHz, and corresponding wavelengths from 1 millimeter to 100 kilometers. Like all other electromagnetic waves, radio waves travel at the speed of light. Naturally occurring radio waves are made by lightning or by astronomical objects. Artificially generated radio waves are used for fixed and mobile radio communication, broadcasting, radar and other navigation systems, communications satellites, computer networks and innumerable other applications. Different frequencies of radio waves have different propagation characteristics in the Earth’s atmosphere—long waves may cover a part of the Earth very consistently, shorter waves can reflect off the ionosphere and travel around the world, and much shorter wavelengths bend or reflect very little and travel on a line of sight. Radio spectrum. Provided by: Wikipedia. Located at: en.Wikipedia.org/wiki/Radio_spectrum. License: CC BY-SA: Attribution-ShareAlike Colors that can be produced by visible light of a narrow band of wavelengths (monochromaticlight) are called pure spectral colors. Quantitatively, the regions of the visible spectrum encompassing each spectral color can be delineated roughly as:Boundless. Provided by: Boundless Learning. Located at: www.boundless.com//physics/definition/thermal-agitation. License: CC BY-SA: Attribution-ShareAlike thermography. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/thermography. License: CC BY-SA: Attribution-ShareAlike newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\) Solar UV radiation is commonly subdivided into three regions: UV-A (320–400 nm), UV-B (290–320 nm), and UV-C (220–290 nm), ranked from long to shorter wavelengths (from smaller to larger energies). Near-infrared, from 120 to 400 THz (2,500 to 750 nm) – Physical processes that are relevant for this range are similar to those for visible light. The highest frequences in this region can be detected directly by some types of photographic film, and by many types of solid state image sensors for infrared photography and videography.

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment